# Flying the Magnetic Compass Gary White

## **Sense of Direction**

Sense of direction is reversed – read right to left



In this case the luber line is slightly West of North

# Units

Each Major (Tall) Unit is 10 degrees e.g. this is 20 degrees



Each Minor (short) Unit is 5 degrees e.g. this is 345 degrees

#### Tips to Interpret Magnetic Compass

- Find closest 30 degree Number to right of Luber Line, e.g. 30, 60, 90, etc.
- Add large units that are between this number and the Luber line as either 10 or 20 degrees (note there can be no more than 2 large units)
- Then add remaining small unit (5 deg), if there is one, between large unit and Luber line

Example: 030 is to the right of Luber and one large unit 30 + 10 = 40There is one small unit between Luber and 1<sup>st</sup> large unit, so 40 + 5 = 45Interpolate between Luber line and small unit, say 3 degrees, so 45 + 3 = 48

## Downward Flux in Mid and Higher

#### Latitudes

The downward vector of the Magnetic flux acts on the Internal components to create

Note at equator no vertical component

## **Turning Errors**

- Turn from N heading to E results in *lag*
- Turn from N heading to W results in *lead* (use styrene cup to explain)
- As turns approach E or W they become minimal
- SI/NO Rule
  - When turning to a Southerly heading, pass it (yes)
  - When turning to a Northerly heading, don't pass it (no)

#### **Turning Errors (cont.)**

- How Does One Apply the SI/NO rule?
  - Trial and Error (not efficient)
  - Approximate overshoots, undershoots
    - Use standard rate turns determine bank angle (~12 deg)
    - Add bank angle to ½ latitude (for here about 30 deg)
- This 'guesstimate' is maximum when approaching N or S
- Don't use when approaching E or W
- Reduce guesstimate for intermediate headings

#### **Turning Errors (cont.)**

Use timing and fly standard rate turns

| Turn<br>(deg) | 30 | 45 | 60 | 90 |
|---------------|----|----|----|----|
| Time (sec)    | 10 | 15 | 20 | 30 |

- Combination of SI/NO and timing may be best
- It may take 5 hours or more of instrument flying using magnetic compass alone to get proficient (efficient)

## **Acceleration Errors**

- On East or West heading, acceleration causes turn to North
- Likewise, deceleration causes turn to South

(use styrene cup to explain)

Remember ANDS (Accelerate N, Decelerate S)

## **Compass Deviation Card**

| FOR (MH)   | 0*        | 30* | 60" | 90* | 120  | 150° | 180* | 210" | 240  | 270* | 300  | 330' |
|------------|-----------|-----|-----|-----|------|------|------|------|------|------|------|------|
| STEER (CH) | 359*      | 30" | 60% | 88* | 120* | 152* | 183* | 212* | 240* | 268+ | 300* | 329  |
| RA         | RADIO OFF |     |     |     |      |      |      |      |      |      |      |      |

Opinion: examine for each aircraft – if less than 2 degrees of deviation error it is likely not worth the effort to try to include since one's ability to interpolate compass readings to less than 2 degrees is problematic

Note: This likely has been developed for radio (electrical) equipment on (see card) – in case of electrical failure, compass errors may be larger than indicated

# Finally

- Call ARTCC and request help for loss or suspected loss of any gyro of vacuum system
- ARTCC can provide 'gyro-out' vectors in case of loss of directional gyro
- In case of loss of AI or total vacuum loss (this in my opinion is an emergency so declare it) they can assist

## **Questions?**